Current Issue : January-March Volume : 2024 Issue Number : 1 Articles : 5 Articles
A critical procedure in sustainable building design is that building energy consumption has significant implications for the global energy crisis and climate change. This study compares three simulation software programs for a photovoltaic system on a building’s roof. The low-rise residential buildings in three East Mediterranean cities (Amman, Mafraq, and Aqaba) represent moderate dry–warm, semi-arid, and humid subtropical climate zones were compared using three simulation software programs (IES-VE, Design-Builder, REVIT) for a typical building with PV on the roof and the second scenario without a PV system installed on the roof. This investigation aims to evaluate the shading effect of the PV system on a building’s roof structure by calculating the total heating and cooling loads required to maintain thermal comfort inside the building. The results showed significant discrepancies between the three software for the base building design and the PV system on the roof, with a range of around 50 %. This highlights the importance of evaluating and calibrating different simulation tools and using them with a great deal of caution....
Aqueous sources like salt lake brines and seawater are the most abundant source for lithium ions and might contribute to the growing demand for lithium for energy storage. By coupling with the increasingly relevant reverse osmosis systems, nanofiltration can provide a promising process alternative to conventional methods such as water evaporation and salt precipitation from ores or brines for this purpose. One possible model for nanofiltration is the solution-diffusionelectromigration model (SDEM). First, the model was parametrized by determining the permeances from simple electrolyte mixtures containing two salts. Then, the SDEM was used to predict the rejections of complex multi-electrolyte solutions that mimic seawater and reverse osmosis brine, without fitting additional parameters to experimental data of this complex mixture. This allowed predicting ion rejections satisfactorily. Negative rejections due to spontaneously generated electric fields in the membrane could also be qualitatively described. In summary, this SDEM modeling can provide an important contribution to the purification of Li+ from aqueous sources....
This study proposes a cellular automaton model incorporating the platoon size of connected automated vehicles (CAVs) to examine their impact on mixed traffic flow. First, vehicles are classified into three modes, human-driven vehicles (HDVs), adaptive cruise control (ACC), and cooperative adaptive cruise control (CACC), by considering the characteristics of the car-following behavior. Second, the CACC is further subdivided into interplatoon and intraplatoon car-following modes due to the limitations of the platoon size of CAVs. Then, cellular automaton rules are developed for each of these four modes. Finally, numerical simulation experiments are conducted to analyze the influence of the penetration rate and platoon size of CAVs on mixed traffic flow. The results demonstrate that (1) the simulation results closely align with the theoretically derived outcomes, with an error rate of only 0.46% at a penetration rate of 100%; (2) when the penetration rate of CAVs reaches 100%, increasing the platoon size further enhances the traffic capacity; and (3) the optimal platoon size is determined to be seven CAVs under moderate traffic density....
In order to perform the inspection planning process on the coordinate measuring machine (CMM), it is necessary to model the measuring system with workpiece, CMM and fixture. The metrological analysis of the workpiece is then conducted, followed by the creation of a measurement program for simulation on a virtual measuring machine in a CAD environment. This paper presents the modelling and simulation of a virtual measuring system based on a real CMM using PTC Creo Parametric 5.0 software. The simulation involved programming the measuring path and generating a DMIS (*.ncl) file, which represents the standard modelled types of tolerance. The analysis of the metrology of the measuring part for the given forms of tolerance (location, perpendicularity, flatness, etc.) was performed. The components of the CMM and the assembly with defined kinematic connections are also modelled. Following the simulation and generation of the output DMIS file in PTC Creo using the virtual CMM, the real CMM was programmed and used for actual measurements. Subsequently, a measurement report was generated. The main result of this paper is the modelling of an offline Digital Measuring Twin (DMT) based on the DMIS file....
A topological index is a real number that is obtained from a chemical graph’s structure. Determining the physiochemical and biological characteristics of a variety of medications is useful since it more accurately represents the theoretical characteristics of organic molecules. This is accomplished using degree-based topological indices. The QSPR research has improved the structural understanding of the physiochemical properties of fungicides. Thirteen fungicides are examined for some of their physiochemical properties, and a QSPR model is built using nine of the drugs’ topological indices. Here, we examine the degree to which the topological indices and physiochemical attributes are connected. To do this, we create networks connecting each of the topological indices to the properties of fungicides and computationally construct topological indices of the drugs mentioned above. According to this QSPR model, the melting point, boiling point, flash point, complexity, surface tension, etc. of fungicides are strongly connected. It was discovered that the topological indices (TIs) applied to the fungicides more accurately represent their theoretical features and show a strong correlation with their physical attributes....
Loading....